• 会員限定
  • 2022/01/24 掲載

需要予測とは? すぐに役立つ「5つの需要予測モデル」を解説

記事をお気に入りリストに登録することができます。
需要予測とは、自社が提供する商品が、将来どれほどの需要を生むのかを予測することを指す。企業は将来どの程度商品が売れるかを予測し、その予測に基づき商品の生産量や部品の仕入れ量などを決めるのだ。そのため、需要予測は企業の事業の成長をサポートし、コストを抑制して利益率を高めるために必要不可欠な業務と言える。『全図解 メーカーの仕事』(ダイヤモンド社)の内容の一部から、そもそも需要予測とは何か、さらには実際に活用できる5つの需要予測モデルを紹介する。

執筆:山口雄大、行本顕、泉啓介、小橋重信

執筆:山口雄大、行本顕、泉啓介、小橋重信

山口雄大(やまぐち・ゆうだい)
入出庫、配送などのロジスティクス実務に従事した後、化粧品メーカーで10年以上、需要予測を担当。需要予測システムの設計、需要予測AI(下記参照)の開発などを主導した。2020年、入山章栄早稲田大学教授の指導の下、「世界標準の経営理論」に依拠した、直感を活用する需要予測モデルを発表(山口、2020)。ビジネス講座「SCMとマーケティングを結ぶ! 需要予測の基本」(日本ロジスティクスシステム協会)を担当するほか、コンサルティングファームで需要予測のアドバイザリーを務め、さまざまな企業や大学等で需要予測の講演を実施。著書に『需要予測の基本』(日本実業出版社)や『需要予測の戦略的活用』(日本評論社)、『品切れ、過剰在庫を防ぐ技術』(光文社新書)があり、機関誌にコラム「知の融合で想像する需要予測のイノベーション」(Logistics systems)を連載中。

行本顕(ゆきもと・けん)
国内大手消費財メーカー勤務。経営企画・財務・法務および海外調達・生産管理を担当。2010年より米国の販売代理店に駐在しS&OPを担当。元銀行員。法学修士。グローバルSCM標準策定・推進団体であるASCM(Association for Supply Chain Management)の資格保有(CPIM-F, CSCP-F, CLTD-F)。同団体の認定インストラクターとして日本生産性本部や日本ロジスティクスシステム協会などにて「APICS科目レビュー講座」「『超』入門!世界標準のSCMセミナー」「S&OPセミナー」ほか複数のSCM講座を担当している。2020年、『ロジスティクスコンセプト2030』(JILS)を各分野の研究者・実務家と発表。同年よりJILS調査研究委員会委員。2021年よりJILSアドバイザーを兼任。著書に『基礎から学べる!世界標準のSCM教本』(共著・日刊工業新聞社)、『APICSディクショナリー第16版』(共著・生産性出版)がある。

泉啓介(いずみ・けいすけ)
外資系化学メーカーでSCMを担当。B to Bビジネスにおける工業用製品や建築用製品、ヘルスケア製品など、さまざまなカテゴリーの生産計画立案や需要予測、需給調整などを経験。国内外のグループ会社の生産計画立案業務の標準化とその展開等にも携わった。 ASCMの資格、CPIM(在庫管理や需給調整に関する知識)とCSCP(サプライチェーン全般のマネジメントに関する知識)を取得。同団体認定インストラクター。サプライチェーン用語を解説するAPICS Dictionaryの翻訳メンバーにも、第14版より参加している。最新版は『APICSディクショナリー第16版』(共著・生産性出版、2020)

小橋重信(こばし・しげのぶ)
物流コンサルティングを専門とする株式会社リンクス代表取締役社長。アパレルメーカーにてMD(マーチャンダイザー)やブランド運営を担当し、上場と倒産を経験。その後、SONY通信サービス事業部にてネットワーク構築の営業や、3PL会社のマーケティング執行役員を経て現職。IFI(アパレル専門の教育機関)やECzine、ECミカタなどで物流をテーマとした講演を実施。日本オムニチャネル協会の物流分科会リーダーを務める。物流倉庫プランナーズのウェブサイトでコラム「攻めの物流、守りの物流」(https://lplanners.jp/blog/kobashi-05/)を連載中。

photo
企業の利益率を大きく左右する「需要予測」とは?
(Photo/Getty Images)

※本記事は『全図解 メーカーの仕事 需要予測・商品開発・在庫管理・生産管理・ロジスティクスのしくみ(著者:山口雄大、行本顕、泉啓介、小橋重)』を再構成したものです。

ビジネス需要予測で知っておくべきこと

 「需要予測」に特化した日本語の書籍は限られているものの、海外ではDemand forecastingやDemand Planningという呼ばれ方で浸透していて、日本よりもはるかに多くの研究が行われてきました。

 需要予測を行うためには、大きく4つの適切な情報が必要だと言われています。(1)事業計画、(2)販売計画、(3)マーケティング計画、(4)過去の販売データ(Historical Data)です。

 もちろん、需要予測に必要な情報はこれだけではなく、業界特有の情報もあります(図表1)。

画像
図表1:需要予測に必要な情報

需要予測に関する基礎知識

 ビジネスにおける需要予測で重要なのは、数学的に高度な予測モデルを構築することではありません。その目的は、事業の成長を支援し、コストを抑制して利益率を高めることです。

 ビジネスにおいて需要予測の対象となるのは、独立需要と呼ばれるもののみです。対になる概念は従属需要であり、たとえば商品自体の需要が独立需要、それを構成する原材料の需要が従属需要となります。従属需要は独立需要から一意に計算することができ、予測する必要はありません。

 また、需要予測は多くの場合、対象の粒度が大きいほど、精度が良くなる傾向があります。たとえば口紅であれば、1色ごとの需要予測よりも、「クレ・ド・ポー ボーテ」というブランドの口紅全色合計といった大きな単位のほうが簡単です。なぜなら需要にはノイズというランダムな変動が含まれ、予測の粒度が大きければ、中で打ち消し合うからです。よって、予測精度は必ず粒度とセットで解釈する必要があります。

 生産のためには色、サイズ別といったSKU(Stock Keeping Unit:商品を管理する最小単位)別の需要予測が必要であり、大きな粒度で予測した場合は、なんらかのロジックでそれを分けることも必要になります。

 そして需要予測は、ターゲットとする時期が先になるほど、精度が悪化する傾向があります。これは、未来になるほど環境変化が発生する確率が上がるからです。

予測モデルのロジック

 需要予測の手法は、過去の販売データのない新商品と、発売後の売上動向が分かっている既存商品とで大きく異なります。既存商品の需要予測は、ニーズの変化を予測することといえます。

 過去の販売データがある商品の需要は、時系列分析によって予測をすることが一般的であり、基本的には精度が最も高くなる傾向があります。時系列分析とは、時間的に連続するデータを、統計学などを使って特徴を把握する手法です。時系列分析は過去からの研究知見が膨大にあり、かなり高度な数学的な内容を含むため、その詳細については本記事のスコープ外としますが、興味のある方は参考文献などを調べてみてください。

 実際のビジネスで需要予測を行う際には、高度な数学の知識は不要です。なぜなら時系列モデルは、一般的なシステムに実装されているからです。需要予測を担うビジネスパーソンは、予測モデルのロジックを理解しておく必要はありますが、それをゼロから設計できなくても大丈夫です。需要予測システムを導入していない企業においても、エクセルで高度な時系列モデルを組む有用性はあまりありません。高度な予測モデルが必要なのであれば、システムを導入するほうが時間と継続性の観点からメリットが大きいです。また、高度なモデルを組まなくても、たとえば前年比(本年実績/前年実績)やFORECAST関数を使えば、エクセルでも十分な精度で需要予測ができる場合も多くあります。ただし、特にSKU数が多い場合は予測システムを使うほうが効率的です。

【次ページ】代表的な5つの需要予測モデルをまるごと解説

関連タグ

あなたの投稿

関連コンテンツ

PR

処理に失敗しました

トレンドタグ

おすすめユーザー

会員登録で動画、資料に使えるホワイトペーパー、オンラインセミナー年間500本など、会員限定記事が​閲覧できる!​

投稿したコメントを
削除しますか?

あなたの投稿コメント編集

機能制限のお知らせ

現在、コメントの違反報告があったため一部機能が利用できなくなっています。

そのため、この機能はご利用いただけません。
詳しくはこちらにお問い合わせください。

通報

このコメントについて、
問題の詳細をお知らせください。

ビジネス+ITルール違反についてはこちらをご覧ください。

通報

報告が完了しました

コメントを投稿することにより自身の基本情報
本メディアサイトに公開されます

必要な会員情報が不足しています。

必要な会員情報をすべてご登録いただくまでは、以下のサービスがご利用いただけません。

  • 記事閲覧数の制限なし

  • [お気に入り]ボタンでの記事取り置き

  • タグフォロー

  • おすすめコンテンツの表示

詳細情報を入力して
会員限定機能を使いこなしましょう!

詳細はこちら 詳細情報の入力へ進む
報告が完了しました

」さんのブロックを解除しますか?

ブロックを解除するとお互いにフォローすることができるようになります。

ブロック

さんはあなたをフォローしたりあなたのコメントにいいねできなくなります。また、さんからの通知は表示されなくなります。

さんをブロックしますか?

ブロック

ブロックが完了しました

ブロック解除

ブロック解除が完了しました

機能制限のお知らせ

現在、コメントの違反報告があったため一部機能が利用できなくなっています。

そのため、この機能はご利用いただけません。
詳しくはこちらにお問い合わせください。

ユーザーをフォローすることにより自身の基本情報
お相手に公開されます